

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Laser Stark Spectroscopy and Isotopic Separation

C. T. Lin^a

^a Institute de Química and Institute de Física "Gleb Wataghin" Universidade Estadual de Campinas, Campinas, SP, BRASIL

To cite this Article Lin, C. T.(1976) 'Laser Stark Spectroscopy and Isotopic Separation', *Spectroscopy Letters*, 9: 9, 615 — 631

To link to this Article: DOI: 10.1080/00387017608067451

URL: <http://dx.doi.org/10.1080/00387017608067451>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

LASER STARK SPECTROSCOPY AND ISOTOPIC SEPARATION

C.T. Lin

Instituto de Química
and

Instituto de Física "Gleb Wataghin"
Universidade Estadual de Campinas
13100, Campinas, SP, BRASIL

ABSTRACT

A potentially useful scheme for photoselective isotope enrichment is presented. The selective laser excitation step is accomplished by utilizing the Stark effect to shift molecular transitions into resonance with laser frequencies. The method is demonstrated for isotope separation of ^{13}C , ^{15}N and ^2H . Laser Stark spectroscopy can sensitively detect as few as 10^9 molecules in the optical path, thus the isotopic separation can be achieved from industrial sample mixtures containing natural abundances. A comparison of the isotopic enrichment efficiency using the present method of "exact" resonance and the previously used method of "near" resonance excitation is also given.

I. INTRODUCTION

Four principal methods: photoionization of atoms⁽¹⁾, photodissociation or photopredissociation of molecules⁽²⁾, photo-deflection of atomic or molecular beams⁽³⁾, and photoacceleration of chemical reactions⁽⁴⁾, have been proposed and demonstrated for utilizing selective laser excitation to separate isotopes. All of these methods require a coincidence in frequency between a laser line and suitable resonant molecular absorption line, which allows one to excite exclusively one isotope species. Very often the laser frequency is only in near-resonance with molecular isotopes, thus the degree of isotopic enrichment is generally governed by the relative absorption cross-section of isotopes at that laser frequency.

The present stage of art in "laser technology" has initiated many laser lines and the advanced high resolution spectroscopic studies have accurately assigned many molecular transitions. However, only a few molecular energy levels coincide with the present laser frequencies in operation. Clearly, this limits the potential for laser isotope separation. To overcome this barrier, one can try to establish more laser frequencies (e.g., improving the laser tunability) or on the other hand one can also shift the energy level of the molecule by various chemical or physical means. The commonly used methods for shifting the molecular energy level are the substitutional effect, the solvent effect, the Zeeman effect and the Stark effect.

In this paper, we illustrate the selectivity of Stark tuning-laser excitation of $^{12}\text{CH}_3\text{F}$ and $^{13}\text{CH}_3\text{F}$ using the $9.4\mu\text{ CO}_2$ laser lines, of $^{14}\text{NH}_3$ and $^{15}\text{NH}_3$ using $10\mu\text{ CO}_2$ and N_2O lasers, and

of H_2CO and D_2CO using a 5.8μ CO laser. Then, we indicate the possible second step of photoexcitation which could lead to the isotope separation. Finally, we compare the separation efficiency with and without the laser Stark excitation.

II. METHODS

A. Apparatus

A block diagram of the experimental set up is shown in Figure 1. The CO laser, the CO_2 laser, and the N_2O and CO_2 lasers are used for separating the isotopes 2H , ^{13}C and ^{15}N , respectively. A Lansing piezoelectric stabilizer is employed to lock the laser on the maximum of the gain profile. The laser wavelength can be selected by tuning the angle of the plane grating. The desired laser frequency is then fitted into the spectrum analyzer for calibration.

The Stark cell contains two Stark electrodes made of optically flat stainless steel bars, each carrying the dimension of $40 \times 5 \times 2.5$ cm. The electrodes are separated by a number of polished quartz spacers of 1-2 mm thickness and clamped by an aluminum cradle. This assembly is then suspended in the middle of the absorption cell, and oriented so that the Stark field is either parallel or perpendicular to the optical field direction corresponding to the selection rules $\Delta M = 0$ or $\Delta M = \pm 1$.

The Stark pulse is generated by connecting a fixed D.C. voltage to one electrode and an "operational" power supply to the other. The variable voltage is switched on and off by the first unit of a pulse generator which is modulated by a square-wave

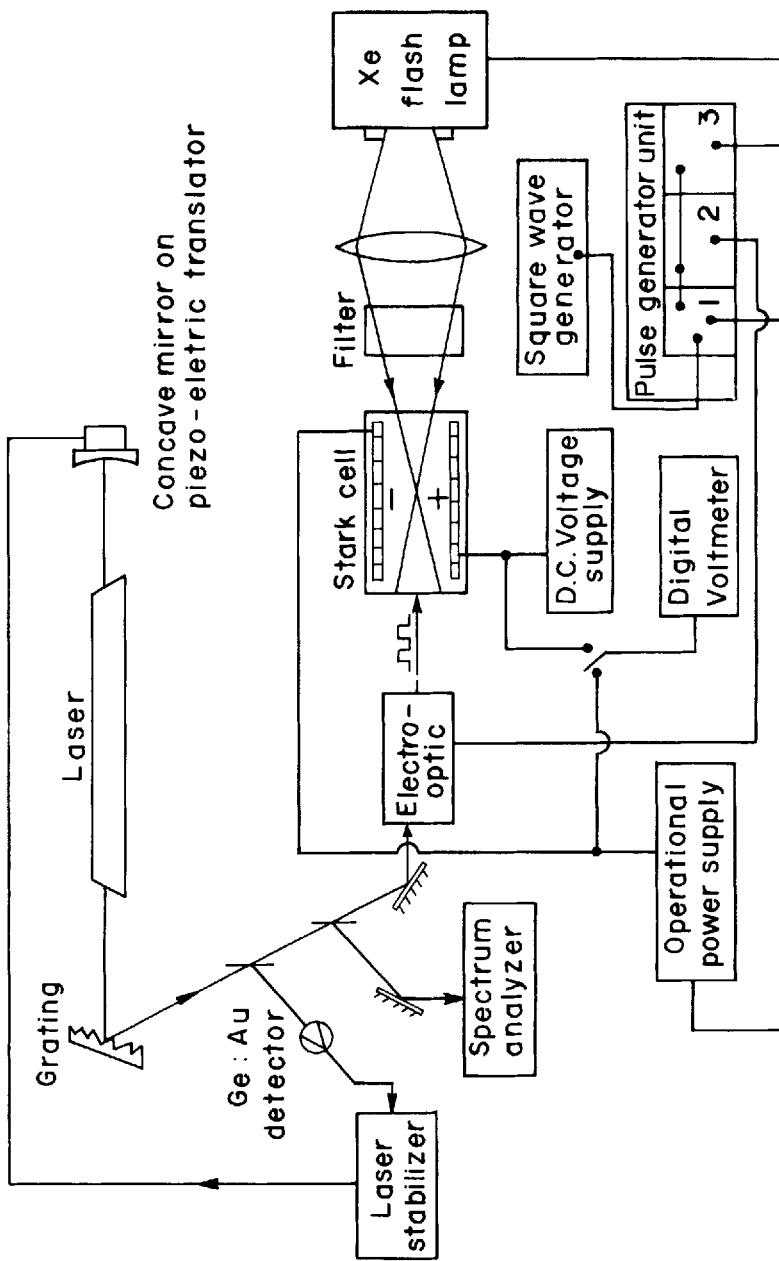


Figure 1. A schematic representation of the experimental arrangement for laser Stark spectroscopy and isotopic separation.

generator. A digital voltmeter is used to measure the voltage across the Stark electrodes.

The laser pulse is produced by using an electro-optic device which is driven by the second unit of the pulse generator. The third unit of the same generator is used to trigger the Xe flash lamp. It is important to note that the pulses from units 1, 2 and 3 of the pulse generator can be tuned to occur simultaneously or sequentially. Moreover, the pulse width and pulse interval are also adjustable.

B. Selective excitation and isotopic separation

1. H_2CO and D_2CO

The C=O stretching (ν_2) vibration-rotation bands of H_2CO and D_2CO near 5.8μ have been studied by Johns and McKellar⁽⁵⁾ using the technique of laser Stark spectroscopy. They were able to detect Stark resonances between the H_2CO ν_2 band and thirteen CO laser lines in the range from 1708 to 1765 cm^{-1} and between the D_2CO ν_2 band and twelve CO laser lines in the range from 1693 to 1712 cm^{-1} . For the present purpose of laser Stark selective excitation, the most interesting and useful CO laser lines are the 14-13 ($\text{V}' \leftrightarrow \text{V}''$) P (16) line at 1746.307 cm^{-1} and the 17 \leftrightarrow 16 P(8) line at 1701.149 cm^{-1} . Figure 2 shows the ν_2 band origin of H_2CO (bottom) and of D_2CO (top) and the Stark field required for the selective excitation. One should note that the 14 \leftrightarrow 13 P(16) CO laser line occurs just 0.3 cm^{-1} above the H_2CO ν_2 band origin, on the other hand the 17 \leftrightarrow 16 P(8) CO laser line is located just 0.47 cm^{-1} below the D_2CO ν_2 band origin. Clearly, the Q branch transition of relatively low J and K values, such as the $q_{Q_1}(1)$,

${}^qQ_2(2)$, ${}^qQ_3(3)$ and ${}^qQ_4(4)$ transitions, can be successively swept into resonance with the laser line by the indicated Stark field. The negative Stark field means the molecular transition has lower wavelength than the corresponding laser line. Thus, if one chooses the laser line and the Stark field given in Figure 2, one could excite exclusively either the D_2CO molecules or the H_2CO molecules in a natural abundance mixture of formaldehyde.

High resolution spectroscopic studies on the excited singlet and triplet electronic states for both D_2CO and H_2CO were reported by several authors⁽⁶⁾. For H_2CO , the 0,0 band of the $\tilde{\Lambda}^1A_2 \leftarrow \tilde{\chi}^1A_1$ is located at $28,188\text{ cm}^{-1}$, whereas that of the $\tilde{\alpha}^3A_2 \leftarrow \tilde{\chi}^1A_1$ transition is appeared at $25,194\text{ cm}^{-1}$. The isotope shift was found to be $(\nu_{0,0})_{D_2CO} - (\nu_{0,0})_{H_2CO} = 113\text{ cm}^{-1}$. Recently, the single vibronic photochemistry of formaldehyde has also been investigated extensively by Yeung and Moore⁽⁷⁾. They found a considerable shortening of the observed lifetimes at higher vibronic states, which was ascribed to the effect of predissociation. Using this fact, a "direct" photopredissociation method has been proposed and demonstrated^(2-a,d,e) for isotopic enrichment. However, we believe that the highest selectivity for 2H separation is available by Stark tuning one isotope of formaldehyde into resonance with an intense and monochromatic CO laser field, followed by exciting that isotopic into its photopredissociative vibronic state using a filtered UV flash lamp ($\sim 27,000\text{ cm}^{-1}$ for the singlet excitation and $\sim 24,000\text{ cm}^{-1}$ for the triplet excitation).

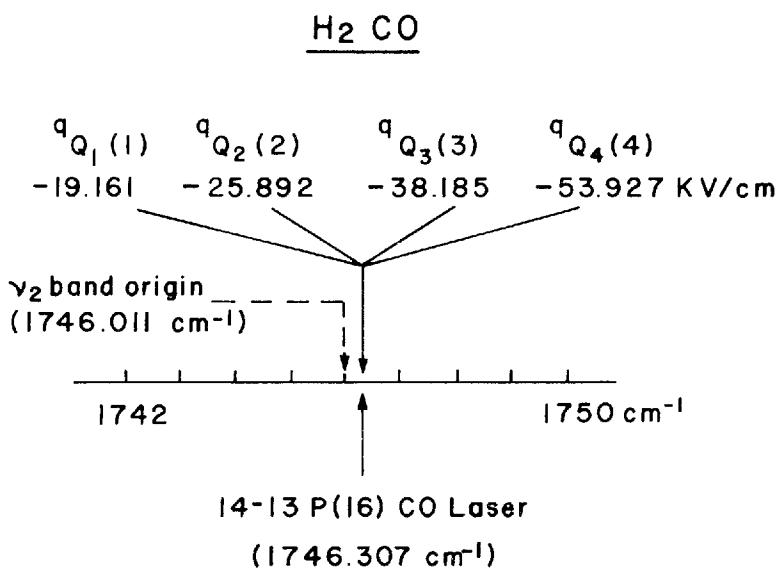
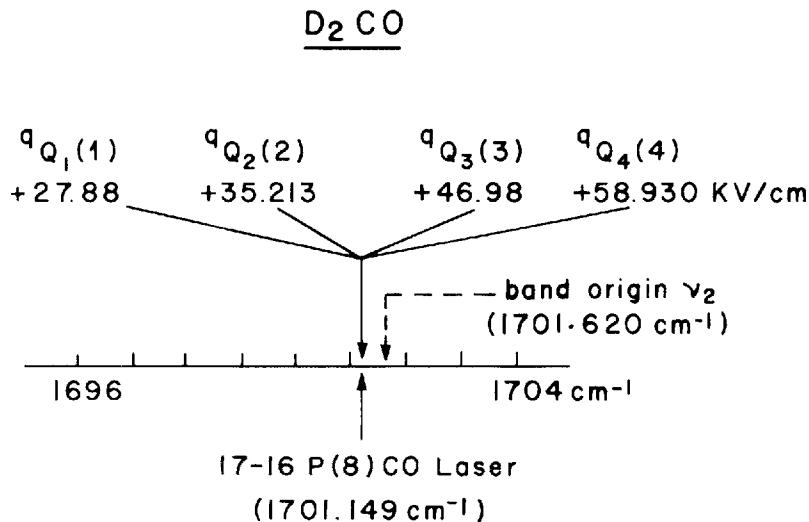
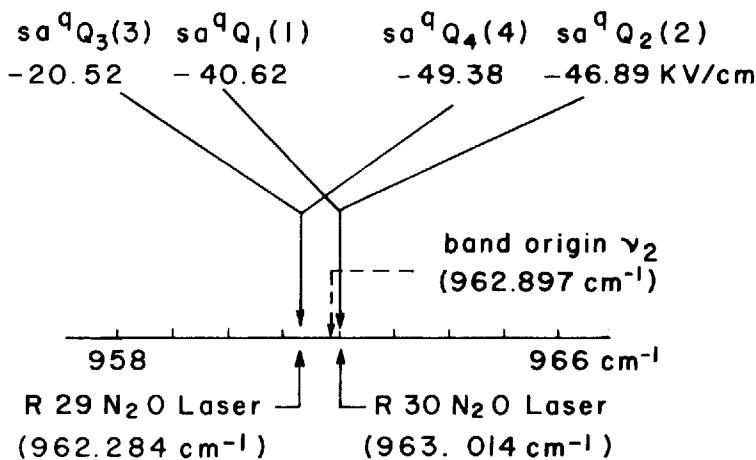



Figure 2. v_2 band origin and Stark energy level diagram of D_2CO (top) and of H_2CO (bottom).

2. $^{14}\text{NH}_3$ and $^{15}\text{NH}_3$

Shimizu recorded and analyzed⁽⁸⁾ the Stark spectra for the out-of-plane bending mode (ν_2) of $^{14}\text{NH}_3$ and of $^{15}\text{NH}_3$ by 10 μ lasers. He tuned the Stark field and observe -100 coincidences between the N_2O and CO_2 laser lines and the ν_2 band lines ($J \leq 7$) of $^{15}\text{NH}_3$ as well as those of $^{14}\text{NH}_3$. Especially, two Q-branch bands were found to be covered by 17 N_2O lines (R30 to R37 and P14 to P6) and 8 CO_2 lines (R8 to R2 and P38 to P32). An example of the Stark tuning "exact" resonance excitation for $^{15}\text{NH}_3$ (top) and $^{14}\text{NH}_3$ (bottom) molecules is summarized in Figure 3. One should note that the Stark shift of ammonia is due mainly to the repulsion between the inversion doublet pairs in its ground state, and the s and a correspond individually to the symmetric and asymmetric levels of the double well potential surface.


The electronically excited states of ammonia have been examined by Douglas⁽⁹⁾. The molecule in its lowest electronically excited state was shown to have a planar geometry and an N-H bond length greater than in the ground state. The (0,0) band of the lowest electronic transition $\tilde{\Lambda}^1\text{A}_2'' (\text{D}_{3h}) \leftarrow \tilde{\chi}^1\text{A}_1 (\text{C}_{3v})$ was assigned at 46,136 cm^{-1} . All vibronic bands associated with this transition appear to be very diffuse, indicating a dissociative state for $\tilde{\Lambda}^1\text{A}_2'' (\text{D}_{3h})$. Taking advantage of this, a "near" resonance selective two step photodissociation method was demonstrated for separating the nitrogen isotopes by Ambartsumyan et al^(2-b). They used a pulsed P(16) CO_2 laser of frequency $\nu_1 = 947.74 \text{ cm}^{-1}$ to selectively excite the molecules and an UV pulse of frequency $\nu_2 = 45,351 \text{ cm}^{-1}$ to dissociate the excited molecules and lead to the separation of isotopes. What empha-

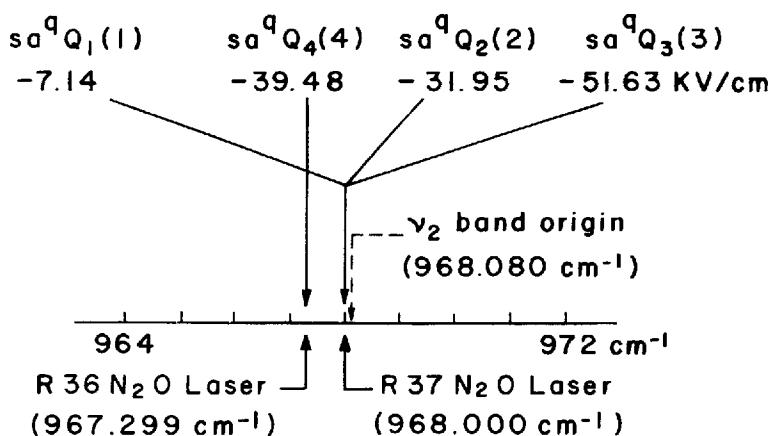
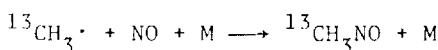
size here is an "exact" resonance two step photodissociation scheme which is simply replacing the pulsed P(16) CO_2 laser in the Ambartsumyan's process by a "Stark tuning" excitation scheme as shown in Figure 3. The high isotopic separation efficiency of our "exact" resonance method, in comparison with that of the previously mentioned "near" resonance excitation process, will be discussed in a later section.

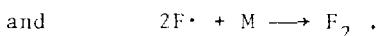
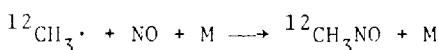
3. $^{12}\text{CH}_3\text{F}$ and $^{13}\text{CH}_3\text{F}$

Methyl fluoride has been employed for various laser spectroscopic experiments because of its "near" coincidences with laser lines and the large intensity of absorption. Herlemont et al⁽¹⁰⁾, and Freund and his coworkers⁽¹¹⁾ were the first to carry out laser Stark spectroscopy in the 10 μ region for the ν_3 bands of $^{12}\text{CH}_3\text{F}$ and $^{13}\text{CH}_3\text{F}$ using CO_2 laser lines, where the ν_3 vibration is due to totally symmetric A_1 species corresponding to the C-F stretching vibration. About 350 Stark resonances were measured and reported for the ν_3 fundamental bands of the methyl fluoride molecule. In particular, the P(18) and P(40) lines of the CO_2 laser were observed to be close to the low J, Q-branch lines of $^{12}\text{CH}_3\text{F}$ and $^{13}\text{CH}_3\text{F}$, respectively. Figure 4 gives the Stark fields and Stark resonances for the transitions of $^qQ_1(1)$, $^qQ_2(2)$, $^qQ_3(3)$ and $^qQ_4(4)$. Due to the fact that the observed Stark resonance signals of methyl fluoride show large signal to noise ratios, Freund et al⁽¹¹⁾ were able to calculate that the number of molecules in the path of the laser radiation is less than 10^9 . This sensitivity has already reached Shimoda's estimation⁽¹²⁾ which states that minimum detectable number of molecules by laser spectroscopy is 10^6 - 10^2 .

$^{15}\text{NH}_3$

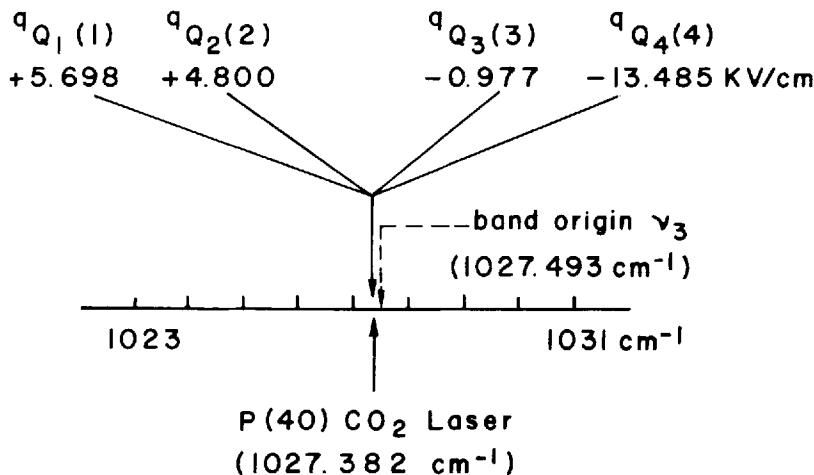
$^{14}\text{NH}_3$

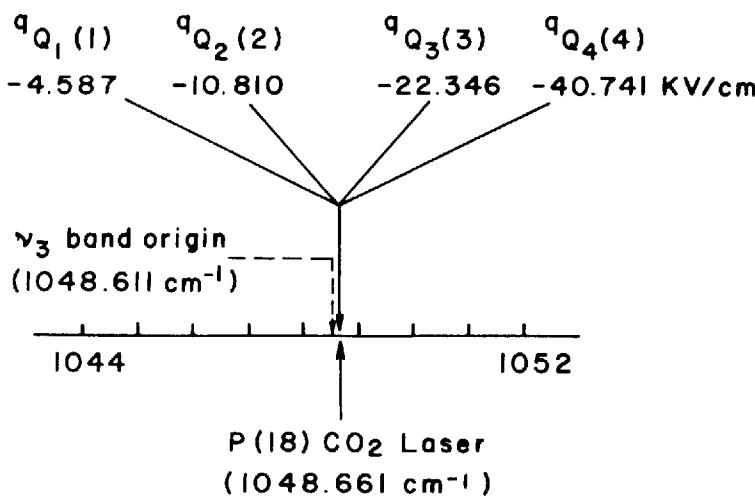


Figure 3. An example of the Stark resonances between the Q-branch transitions of $^{15}\text{NH}_3$ and $^{14}\text{NH}_3$ and the N_2O laser.

It was shown⁽¹³⁾ that the observed electronic transitions of methyl fluoride in the vacuum ultraviolet (VUV) range are atomic like and could be described as Rydberg states. Experimentally, it is complicated to employ the second photon of VUV to excite or to dissociate the CH_3F molecules. Thus, a new photophysical or photochemical process, which is different from those of the sections II-B-1 and II-B-2, is needed for the isotopic separation of $^{12}\text{CH}_3\text{F}$ from $^{13}\text{CH}_3\text{F}$ or vice versa.

It was suggested^(4-c) that a multiple photon absorption of CO_2 laser radiation at high power density by a polyatomic molecule could lead to a high state of molecular excitation, or dissociation. Using this fact, when a sample mixture of methyl fluoride and NO is Stark tuned into resonance with the CO_2 laser line, (cf. Figure 4), the free radicals of either $^{13}\text{CH}_3\cdot$ or $^{12}\text{CH}_3\cdot$ and $\text{F}\cdot$ are generated. The methyl radicals can then react with NO by the following known chemical reaction⁽¹⁴⁾



or



In practice, the carbon isotope enrichment is attainable simply by neglecting the UV pulse from the unit 3 of the pulse generator in Figure 1 and by using a high power pulsed CO_2 laser at a focus of $P \geq 10^9 \text{ W/cm}^2$.

$^{13}\text{CH}_3\text{F}$

$$^{12}\text{CH}_3\text{F}$$

III. DISCUSSION AND REMARKS

In this paper we have illustrated the applicability of laser Stark spectroscopy to the isotope separation of ^{13}C , ^{15}N and ^2H . One needs to emphasize that there are two advantages in using the present process over previously proposed methods: one advantage is the high sensitivity and the other is the "exact" resonance excitation.

As we have indicated earlier, laser Stark spectroscopy can detect as few as 10^9 molecules in the laser optical light path. If one assumes that the sample pressure in the Stark cell is 10 torr, the sample cell is 40 cm in length as given in Figure 1, and the cross section of the laser radiation is 0.02 cm^2 , then the number of molecules existing within the laser radiation path can be calculated as 2.5×10^{17} . Moreover, as the natural abundance of the $^{13}\text{CH}_3\text{F}$ in methyl fluoride, of the D_2CO in formaldehyde and of the $^{15}\text{NH}_3$ in ammonia is 1.11×10^{-2} , 2.35×10^{-8} and 3.7×10^{-3} , respectively, under our experimental condition we would have 2.8×10^{15} molecules of $^{13}\text{CH}_3\text{F}$, 5.9×10^9 molecules of D_2CO and 9.3×10^{14} molecules of $^{15}\text{NH}_3$ available in the laser optical path for the isotope separation of ^{13}C , ^2H and ^{15}N , respectively. In all cases, the number of isotope molecules that exist in the laser light path is definitely greater than the sensitivity limit of laser Stark spectroscopy.

Figure 4. Stark energy diagrams for the $^q\text{Q}_1(1)$, $^q\text{Q}_2(2)$, $^q\text{Q}_3(3)$ and $^q\text{Q}_4(4)$ transitions of $^{13}\text{CH}_3\text{F}$ and $^{12}\text{CH}_3\text{F}$.

From section II-B of this paper, we calculate that the average frequency difference between the laser line and the molecular transition line is 0.3 cm^{-1} . Since a typical lifetime from a vibration-rotation line is $-1 \times 10^{-6} \text{ sec}$, the natural linewidth of those transition lines can be evaluated as $1.6 \times 10^{-5} \text{ cm}^{-1}$. Experimentally, the Doppler linewidth for formaldehyde, ammonia and methyl fluoride was determined⁽¹⁵⁾ to be 2.4×10^{-3} , 3.2×10^{-3} and $1.2 \times 10^{-3} \text{ cm}^{-1}$, at room temperature. Assuming a Lorentzian shape for all the transition lines, the absorption 0.3 cm^{-1} away is 2.5×10^{-9} of the absorption strength at the center. Evidently, if one employs the laser Stark tuning technique to achieve an "exact" resonance excitation, one would be able to obtain a 4×10^8 times larger absorption strength than the absorption strength obtained without using the Stark technique. Furthermore, one would also have a greater possibility of exciting the unwanted isotope species within the $\pm 0.3 \text{ cm}^{-1}$ spectral range.

It is important to mention at this point that the applicability of Stark tuning-laser photochemistry has been demonstrated by Lin and Porto^(4-a) for isotopic separation of deuterium and for the production of "heavy water". It was shown that the cost for producing D_2O using laser Stark spectroscopy is much lower than the ordinary electrolysis process⁽¹⁶⁾. The detailed experimental results on the isotopic separation of ^{13}C , ^{15}N and ^2H will be given in the forthcoming papers.

ACKNOWLEDGEMENT: The author wishes to acknowledge the financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant No. 74/1334.

REFERENCES

1. a) U. Brinkmann, W. Hartig, H. Telle and Walther, Post-Deadline Paper, VII Int'l. Quant. Electr. Conf., San Francisco, June 1974.
b) I. Nebenzahl and M. Leven, German Patent Appl. Nc.P23 12 1940, March 12, 1973.
c) S.A. Tuccio, J.W. Dubrin, O.G. Peterson and B.B. Snavely, UCRL Report 75696, June 1974.
d) R.H. Levy and G.S. Janes, US Patent 3772 519, November 13, 1973.
2. a) E.S. Yeung and C.B. Moore, Appl. Phys. Letters, 21, 109 (1972).
b) R.V. Ambartsumyan, V.S. Lethokov, G.N. Makarov and A.A. Puretskii, Zh ETF Pis. Red., 17, 91 (1973).
c) S. Rockwood and S.W. Rabideau, Post-Deadline Paper, VIII Int'l. Quant. Electr. Conf., San Francisco, June 1974.
d) J.H. Clark, Y. Haas, P.L. Houston and C.B. Moore, Chem. Phys. Letters, 35, 82 (1975).
e) John B. Marling, Chem. Phys. Letters, 34, 84 (1975).
3. I. Nebenzahl and A. Szöke, Appl. Phys. Letters, 25, 327 (1974).
4. a) C.T. Lin; C.T. Lin and S.P.S. Porto, Convênio CNEN-CTA 103092/74, Brasil, August 1975.
b) C.T. Lin, Spectrosc. Letters (Special Issue on Chemistry and Lasers, edited by C.P. Kesthelyi, 8(11), (1975)).

- c) R.L. Lyman, R.J. Jensen, J. Rink, C.P. Robinson and S.D. Rockwood, *Appl. Phys. Letters*, 27, 87 (1975).
- d) S.D. Rockwood and J.W. Hudson, *Chem. Phys. Letters*, 34, 542 (1975).
- e) D.D.S. Liu, S. Datta and R.N. Zare, *J. Amer. Chem. Soc.*, 97, 2558 (1975).
- f) R.M. Hochstrasser and D.S. King, *J. Amer. Chem. Soc.*, 97, 4762 (1975).
- g) M. Lamotte, H.J. Dewey, R.A. Keller and J.J. Ritter, *Chem. Phys. Letters*, 30, 165 (1975).
- h) S.M. Freund and J.J. Ritter, *Chem. Phys. Letters*, 32, 255 (1975).
- i) S.W. Mayer, M.A. Kwok, R.W.F. Gross and D.J. Spencer, *Appl. Phys. Letters*, 17, 516 (1970).
- 5. J.W.C. Johns and A.R.W. McKellar, *J. Mol. Spectrosc.*, 48, 354 (1973).
- 6. For a review: D.C. Moule and A.D. Walsh, *Chem. Rev.* 75, 67 (1975).
- 7. E.S. Yeung and C.B. Moore, *J. Chem. Phys.*, 58, 3988 (1973); 60, 2139 (1974).
- 8. F. Shimizu, *J. Chem. Phys.*, 52, 3572 (1970); 53, 1149 (1970).
- 9. A.E. Douglas, *Disc. Faraday Soc.*, 35, 158 (1963).
- 10. F. Herlemont, J. Lemaire, J. Houriez and J. Thibault, *C.R. Acad. Sci. Paris, Ser. B*, 276, 733 (1973).
- 11. S.M. Freund, G. Duxbury, M. Römhild, J.T. Tiedje and T. Oka, *J. Mol. Spectrosc.*, 52, 38 (1974).
- 12. K. Shimoda, *Appl. Phys.*, 1, 77 (1973).
- 13. S. Stokes and A.B.F. Duncan, *J. Amer. Chem. Soc.*, 80, 6177 (1958).

14. J. Heicklen and N. Cohen, "Advances in Photochemistry", Vol. 5, New York, 1968.
15. J.W.C. Johns, A.R.W. Mckellar, T. Oka and M. Römhild, J. Chem. Phys., 62, 1488 (1975).
16. H.S. Taylor, T. Eyring and A.A. Frost, J. Chem. Phys., 1, 823 (1933).